Chevron Left
Volver a A Crash Course in Causality: Inferring Causal Effects from Observational Data

Opiniones y comentarios de aprendices correspondientes a A Crash Course in Causality: Inferring Causal Effects from Observational Data por parte de Universidad de Pensilvania

4.7
estrellas
455 calificaciones

Acerca del Curso

We have all heard the phrase “correlation does not equal causation.” What, then, does equal causation? This course aims to answer that question and more! Over a period of 5 weeks, you will learn how causal effects are defined, what assumptions about your data and models are necessary, and how to implement and interpret some popular statistical methods. Learners will have the opportunity to apply these methods to example data in R (free statistical software environment). At the end of the course, learners should be able to: 1. Define causal effects using potential outcomes 2. Describe the difference between association and causation 3. Express assumptions with causal graphs 4. Implement several types of causal inference methods (e.g. matching, instrumental variables, inverse probability of treatment weighting) 5. Identify which causal assumptions are necessary for each type of statistical method So join us.... and discover for yourself why modern statistical methods for estimating causal effects are indispensable in so many fields of study!...

Principales reseñas

WJ

11 de sep. de 2021

Great introduction on the causal analysis.The instructor did a great job on explaining the topic in a logical and rigorous way. R codes are very relevant and helpful to digest the material as well.

MF

27 de dic. de 2017

I really enjoyed this course, the pace could be more even in parts. Sometimes the pace could be more even and some more books/reference material for further study would be nice.

Filtrar por:

1 - 25 de 151 revisiones para A Crash Course in Causality: Inferring Causal Effects from Observational Data

por Pak S H

7 de sep. de 2020

por Fred

30 de nov. de 2017

por Alexis U

7 de nov. de 2020

por Miguel B

17 de abr. de 2018

por Dr. C C

20 de mar. de 2021

por Oliver D

30 de jul. de 2020

por charlene e

16 de jul. de 2017

por Wei F

25 de nov. de 2018

por Dr. A B

17 de mar. de 2020

por Jiacong L

27 de nov. de 2019

por Theo B

2 de jul. de 2017

por Mateusz K

7 de dic. de 2018

por Sam P

4 de oct. de 2020

por Odinn W

29 de mar. de 2020

por Herman S

2 de oct. de 2017

por KATONA N P

1 de dic. de 2019

por Leihua Y

12 de may. de 2019

por Stephen M D

4 de sep. de 2019

por Benjamin R

1 de sep. de 2019

por Seana G

4 de may. de 2020

por Ayush T

17 de ene. de 2020

por Ali A A M

15 de feb. de 2021

por HEF

18 de feb. de 2019

por Srinidhi M

26 de abr. de 2020

por Mark F

28 de dic. de 2017