Chevron Left
Volver a Custom and Distributed Training with TensorFlow

Opiniones y comentarios de aprendices correspondientes a Custom and Distributed Training with TensorFlow por parte de deeplearning.ai

4.8
estrellas
323 calificaciones

Acerca del Curso

In this course, you will: • Learn about Tensor objects, the fundamental building blocks of TensorFlow, understand the difference between the eager and graph modes in TensorFlow, and learn how to use a TensorFlow tool to calculate gradients. • Build your own custom training loops using GradientTape and TensorFlow Datasets to gain more flexibility and visibility with your model training. • Learn about the benefits of generating code that runs in graph mode, take a peek at what graph code looks like, and practice generating this more efficient code automatically with TensorFlow’s tools. • Harness the power of distributed training to process more data and train larger models, faster, get an overview of various distributed training strategies, and practice working with a strategy that trains on multiple GPU cores, and another that trains on multiple TPU cores. The DeepLearning.AI TensorFlow: Advanced Techniques Specialization introduces the features of TensorFlow that provide learners with more control over their model architecture and tools that help them create and train advanced ML models. This Specialization is for early and mid-career software and machine learning engineers with a foundational understanding of TensorFlow who are looking to expand their knowledge and skill set by learning advanced TensorFlow features to build powerful models....

Principales reseñas

VV

8 de ene. de 2022

Another great course by Moroney sir. Loved how TF can be used to train models using different strategies. A great intro to the deep applications of TensorFlow

RA

15 de jul. de 2021

5 stars for excellent videos, contents and code walkthrough. Insipired me to learn more and experiment on distributed training and custom training loop.

Filtrar por:

1 - 25 de 47 revisiones para Custom and Distributed Training with TensorFlow

por DEBASHIS G

27 de nov. de 2020

por Shaik S

23 de nov. de 2020

por Pramit D

10 de feb. de 2021

por Hüseyin K

16 de feb. de 2021

por Homayoun

23 de abr. de 2021

por Francois R

6 de mar. de 2021

por Muhammad D

12 de jun. de 2022

por Vaseekaran V

9 de ene. de 2022

por Rajendra A

16 de jul. de 2021

por josua n

23 de jun. de 2022

por Gang-Won J

12 de dic. de 2021

por Animesh

2 de feb. de 2021

por Nikolay S

28 de feb. de 2021

por Abdelrahman A

21 de ene. de 2021

por Tuan D V

11 de ago. de 2021

por Artur Z

8 de ene. de 2021

por 동인 장

29 de mar. de 2021

por Seyyed S M

6 de ago. de 2022

por Gonzalo G N

20 de feb. de 2021

por Marco S

29 de jul. de 2021

por Yasar M

18 de jun. de 2021

por Marco

14 de oct. de 2021

por Pratama A A

6 de abr. de 2021

por Himasha J

25 de oct. de 2021

por David J

25 de nov. de 2021