Chevron Left
Volver a Data-driven Astronomy

Opiniones y comentarios de aprendices correspondientes a Data-driven Astronomy por parte de Universidad de Sidney

1,190 calificaciones

Acerca del Curso

Science is undergoing a data explosion, and astronomy is leading the way. Modern telescopes produce terabytes of data per observation, and the simulations required to model our observable Universe push supercomputers to their limits. To analyse this data scientists need to be able to think computationally to solve problems. In this course you will investigate the challenges of working with large datasets: how to implement algorithms that work; how to use databases to manage your data; and how to learn from your data with machine learning tools. The focus is on practical skills - all the activities will be done in Python 3, a modern programming language used throughout astronomy. Regardless of whether you’re already a scientist, studying to become one, or just interested in how modern astronomy works ‘under the bonnet’, this course will help you explore astronomy: from planets, to pulsars to black holes. Course outline: Week 1: Thinking about data - Principles of computational thinking - Discovering pulsars in radio images Week 2: Big data makes things slow - How to work out the time complexity of algorithms - Exploring the black holes at the centres of massive galaxies Week 3: Querying data using SQL - How to use databases to analyse your data - Investigating exoplanets in other solar systems Week 4: Managing your data - How to set up databases to manage your data - Exploring the lifecycle of stars in our Galaxy Week 5: Learning from data: regression - Using machine learning tools to investigate your data - Calculating the redshifts of distant galaxies Week 6: Learning from data: classification - Using machine learning tools to classify your data - Investigating different types of galaxies Each week will also have an interview with a data-driven astronomy expert. Note that some knowledge of Python is assumed, including variables, control structures, data structures, functions, and working with files....

Principales reseñas


10 de sep. de 2020

Really amazing course! Gave me insights into how data analysis works in the field of astronomy and how one can use different machine learning techniques to classify the huge amounts of data generated.


28 de feb. de 2020

Its been amazing to learn about the celestial objects, stars, galaxies. The lectures and quizzes spurred in me to explore new material online. Great hands on exercises in python and machine learning

Filtrar por:

1 - 25 de 348 revisiones para Data-driven Astronomy

por Ayush N

21 de oct. de 2018


6 de mar. de 2020

por Robert G

30 de nov. de 2020

por Gautam D

3 de dic. de 2017

por avinash

21 de jun. de 2018

por riccardo c

20 de jun. de 2020

por Rodney B

28 de dic. de 2020

por Max H

14 de abr. de 2018

por Arnaud D

18 de ago. de 2018

por Gabriel A

4 de mar. de 2020

por James H

20 de mar. de 2020

por Andrew U

13 de feb. de 2020

por Maria D

29 de mar. de 2020

por Thalia J S

15 de dic. de 2019

por João P M

15 de jul. de 2017

por Maria S

9 de abr. de 2020

por Eric H

28 de oct. de 2020

por Shruti P

9 de jun. de 2020

por Peregrine D

13 de may. de 2019

por Tomas M

24 de oct. de 2020

por Jerome L

16 de oct. de 2017

por Ricardo S

4 de may. de 2020

por Adnan R

14 de jul. de 2020

por Jonathan C

29 de dic. de 2017

por Javier E

10 de oct. de 2019