In the third course of Machine Learning Engineering for Production Specialization, you will build models for different serving environments; implement tools and techniques to effectively manage your modeling resources and best serve offline and online inference requests; and use analytics tools and performance metrics to address model fairness, explainability issues, and mitigate bottlenecks.
Este curso forma parte de Programa especializado: Machine Learning Engineering for Production (MLOps)
Ofrecido Por

Acerca de este Curso
• Some knowledge of AI / deep learning
• Intermediate Python skills
• Experience with any deep learning framework (PyTorch, Keras, or TensorFlow)
¿Podría tu empresa beneficiarse de la capacitación de los empleados en las habilidades más demandadas?
Prueba Coursera para negociosQué aprenderás
Apply techniques to manage modeling resources and best serve batch and real-time inference requests.
Use analytics to address model fairness, explainability issues, and mitigate bottlenecks.
Habilidades que obtendrás
- Explainable AI
- Fairness Indicators
- automl
- Model Performance Analysis
- Precomputing Predictions
• Some knowledge of AI / deep learning
• Intermediate Python skills
• Experience with any deep learning framework (PyTorch, Keras, or TensorFlow)
¿Podría tu empresa beneficiarse de la capacitación de los empleados en las habilidades más demandadas?
Prueba Coursera para negociosOfrecido por
Programa - Qué aprenderás en este curso
Week 1: Neural Architecture Search
Week 2: Model Resource Management Techniques
Week 3: High-Performance Modeling
Week 4: Model Analysis
Reseñas
- 5 stars64,78 %
- 4 stars20,26 %
- 3 stars6,64 %
- 2 stars5,31 %
- 1 star2,99 %
Principales reseñas sobre MACHINE LEARNING MODELING PIPELINES IN PRODUCTION
Covers a lot of hot topics related to ML Modeling pipelines in production with great breadth and depth.
I enjoyed this course a lot. It gave me a lot of ideas on how I can improve my models and make my workflow more efficient. Thank you.
There were a lot of useful information and practical insights about the subject of the course. The material on Tensorflow-specific modules felt a bit unorganized and cumbersome to go through.
Lots of hands-on exercises accompanying knowledge learned in this course 3, but could be difficult for someone without prior working knowledge on Google Cloud platform/services.
Acerca de Programa especializado: Machine Learning Engineering for Production (MLOps)

Preguntas Frecuentes
¿Cuándo podré acceder a las lecciones y tareas?
¿Qué recibiré si me suscribo a este Programa especializado?
¿Cuál es la política de reembolsos?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.