Chevron Left
Volver a Bayesian Statistics: Mixture Models

Opiniones y comentarios de aprendices correspondientes a Bayesian Statistics: Mixture Models por parte de Universidad de California en Santa Cruz

4.7
estrellas
33 calificaciones

Acerca del Curso

Bayesian Statistics: Mixture Models introduces you to an important class of statistical models. The course is organized in five modules, each of which contains lecture videos, short quizzes, background reading, discussion prompts, and one or more peer-reviewed assignments. Statistics is best learned by doing it, not just watching a video, so the course is structured to help you learn through application. Some exercises require the use of R, a freely-available statistical software package. A brief tutorial is provided, but we encourage you to take advantage of the many other resources online for learning R if you are interested. This is an intermediate-level course, and it was designed to be the third in UC Santa Cruz's series on Bayesian statistics, after Herbie Lee's "Bayesian Statistics: From Concept to Data Analysis" and Matthew Heiner's "Bayesian Statistics: Techniques and Models." To succeed in the course, you should have some knowledge of and comfort with calculus-based probability, principles of maximum-likelihood estimation, and Bayesian estimation....

Principales reseñas

Filtrar por:

1 - 13 de 13 revisiones para Bayesian Statistics: Mixture Models

por Rohit D

19 de jun. de 2020

por zj s

31 de ago. de 2020

por Tomas F

21 de dic. de 2021

por piaoyang

11 de dic. de 2021

por Rajendra A

26 de ene. de 2021

por mgbacher

31 de jul. de 2020

por Suraj M

20 de ene. de 2021

por Rick S

1 de jul. de 2021

por Jaime A C

12 de ene. de 2022

por Dziem N

16 de jun. de 2021

por Chow K M

18 de may. de 2021

por Rahul S

3 de abr. de 2021

por Murray S

31 de may. de 2022