Chevron Left
Volver a Optimize ML Models and Deploy Human-in-the-Loop Pipelines

Opiniones y comentarios de aprendices correspondientes a Optimize ML Models and Deploy Human-in-the-Loop Pipelines por parte de deeplearning.ai

4.7
estrellas
77 calificaciones

Acerca del Curso

In the third course of the Practical Data Science Specialization, you will learn a series of performance-improvement and cost-reduction techniques to automatically tune model accuracy, compare prediction performance, and generate new training data with human intelligence. After tuning your text classifier using Amazon SageMaker Hyper-parameter Tuning (HPT), you will deploy two model candidates into an A/B test to compare their real-time prediction performance and automatically scale the winning model using Amazon SageMaker Hosting. Lastly, you will set up a human-in-the-loop pipeline to fix misclassified predictions and generate new training data using Amazon Augmented AI and Amazon SageMaker Ground Truth. Practical data science is geared towards handling massive datasets that do not fit in your local hardware and could originate from multiple sources. One of the biggest benefits of developing and running data science projects in the cloud is the agility and elasticity that the cloud offers to scale up and out at a minimum cost. The Practical Data Science Specialization helps you develop the practical skills to effectively deploy your data science projects and overcome challenges at each step of the ML workflow using Amazon SageMaker. This Specialization is designed for data-focused developers, scientists, and analysts familiar with the Python and SQL programming languages and want to learn how to build, train, and deploy scalable, end-to-end ML pipelines - both automated and human-in-the-loop - in the AWS cloud....

Principales reseñas

KK

15 de feb. de 2022

Highly technical but beneficial course that allows you to explore resource constraints of an ML application. Thanks for simplifying as much as possible, enjoyed every bit!

LL

21 de jul. de 2021

In this course I learn about training, fine-tuning, deploying and monitoring Models in AWS. The ideas about Human-in-the-loop pipelines is pretty cool.

Filtrar por:

1 - 21 de 21 revisiones para Optimize ML Models and Deploy Human-in-the-Loop Pipelines

por Alexander M

29 de ago. de 2021

por Diego M

20 de nov. de 2021

por Sanjay C

17 de ene. de 2022

por Mark P

13 de sep. de 2021

por Parag K

22 de oct. de 2021

por YANGYANG C

4 de sep. de 2021

por Chris D

28 de ago. de 2021

por Kaan G K

16 de feb. de 2022

por phoenix c

12 de sep. de 2021

por lonnie

22 de jul. de 2021

por Martin H

23 de mar. de 2022

por Simon h

14 de sep. de 2021

por yugesh v

5 de ene. de 2022

por James H

27 de may. de 2022

por Kee K Y

7 de ago. de 2021

por k b

31 de ene. de 2022

por Daniel M

16 de ene. de 2022

por Iakovina K

13 de may. de 2022

por Muhammad D

18 de ago. de 2022

por Antony W

17 de ago. de 2021

por Siddharth S

31 de mar. de 2022