Chevron Left
Volver a Machine Learning: Regression

Opiniones y comentarios de aprendices correspondientes a Machine Learning: Regression por parte de Universidad de Washington

5,503 calificaciones

Acerca del Curso

Case Study - Predicting Housing Prices In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to: -Describe the input and output of a regression model. -Compare and contrast bias and variance when modeling data. -Estimate model parameters using optimization algorithms. -Tune parameters with cross validation. -Analyze the performance of the model. -Describe the notion of sparsity and how LASSO leads to sparse solutions. -Deploy methods to select between models. -Exploit the model to form predictions. -Build a regression model to predict prices using a housing dataset. -Implement these techniques in Python....

Principales reseñas


16 de mar. de 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!


4 de may. de 2020

Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the’s just that turicreate library that caused some issues, however the course deserves a 5/5

Filtrar por:

76 - 100 de 987 revisiones para Machine Learning: Regression

por Matthew B

4 de jun. de 2016

por Christopher M

26 de ene. de 2019

por Sander v d O

16 de mar. de 2016

por Mohamed A H

27 de nov. de 2018

por Theodore G

23 de oct. de 2016

por Diwakar S G

26 de jul. de 2020

por Charlie Q

11 de ago. de 2018

por Joseph K

5 de dic. de 2015

por Phil O

10 de dic. de 2018

por Ridhwanul H

16 de oct. de 2017

por Pak3d

20 de ene. de 2019

por Himadri M

11 de jul. de 2016

por Anantha P

6 de ago. de 2018

por Hanqiao L

11 de mar. de 2016

por Dhananjay M

7 de feb. de 2016

por Maxence L

10 de ago. de 2016

por Asif N

5 de jul. de 2017


10 de abr. de 2020

por Ganesan P

20 de jun. de 2016

por Prashant R

8 de ago. de 2016

por SHUN Z

24 de feb. de 2016

por Omar S

22 de ago. de 2016

por Ilias A

30 de dic. de 2018

por Willismar M C

14 de oct. de 2016

por Mohammad A K

12 de mar. de 2016