This course covers two of the most popular open source platforms for MLOps: MLflow and Hugging Face. We’ll go through the foundations on what it takes to get started in these platforms with basic model and dataset operations. You will start with MLflow using projects and models with its powerful tracking system and you will learn how to interact with these registered models from MLflow with full lifecycle examples. Then, you will explore Hugging Face repositories so that you can store datasets, models, and create live interactive demos. Through a series of hands-on exercises, learners will gain practical experience working with these open source platforms. By the end of the course, you will be able to apply MLOps concepts like fine-tuning and deploying containerized models to the Cloud. This course is ideal for anyone looking to break into the field of MLOps or for experienced MLOps professionals who want to improve their programming skills.
Ofrecido Por
Open Source Platforms for MLOps
Duke UniversityAcerca de este Curso
11.576 vistas recientes
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Nivel avanzado
Intermediate experience in working with Python, Git for version control, Docker for containerization and Kubernetes for deployment and scaling.
Aprox. 13 horas para completar
Inglés (English)
Qué aprenderás
Create new MLflow projects to create and register models.
Use Hugging Face models and datasets to build your own APIs.
Package and deploy Hugging Face to the Cloud using automation.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Nivel avanzado
Intermediate experience in working with Python, Git for version control, Docker for containerization and Kubernetes for deployment and scaling.
Aprox. 13 horas para completar
Inglés (English)
Ofrecido por
Programa - Qué aprenderás en este curso
3 horas para completar
Introduction to MLflow
3 horas para completar
13 videos (Total 82 minutos), 2 lecturas, 1 cuestionario
3 horas para completar
Introduction to Hugging Face
3 horas para completar
14 videos (Total 98 minutos)
3 horas para completar
Deploying Hugging Face
3 horas para completar
13 videos (Total 76 minutos)
4 horas para completar
Applied Hugging Face
4 horas para completar
11 videos (Total 65 minutos)
Preguntas Frecuentes
When will I have access to the lectures and assignments?
What will I get if I purchase the Certificate?
Is financial aid available?
Does your course require any paid software for course completion?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.