Chevron Left
Volver a Probabilistic Graphical Models 3: Learning

Opiniones y comentarios de aprendices correspondientes a Probabilistic Graphical Models 3: Learning por parte de Universidad de Stanford

4.6
estrellas
292 calificaciones

Acerca del Curso

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the third in a sequence of three. Following the first course, which focused on representation, and the second, which focused on inference, this course addresses the question of learning: how a PGM can be learned from a data set of examples. The course discusses the key problems of parameter estimation in both directed and undirected models, as well as the structure learning task for directed models. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of two commonly used learning algorithms are implemented and applied to a real-world problem....

Principales reseñas

SP

11 de oct. de 2020

An amazing course! The assignments and quizzes can be insanely difficult espceially towards the conclusion.. Requires textbook reading and relistening to lectures to gather the nuances.

LL

29 de ene. de 2018

very good course for PGM learning and concept for machine learning programming. Just some description for quiz of final exam is somehow unclear, which lead to a little bit confusing.

Filtrar por:

1 - 25 de 50 revisiones para Probabilistic Graphical Models 3: Learning

por Akshaya T

14 de mar. de 2019

por Amine M

17 de jun. de 2019

por Ahmed S

22 de sep. de 2017

por Maxim V

30 de abr. de 2020

por Rohan M

5 de dic. de 2019

por Dat N

14 de nov. de 2019

por Lik M C

23 de feb. de 2019

por Shawn

20 de ago. de 2020

por Diogo P

15 de nov. de 2017

por Rishabh G

3 de jun. de 2020

por Jesus I G R

30 de may. de 2020

por Michel S

14 de jul. de 2018

por Antônio H R

6 de nov. de 2018

por Sergey S

24 de sep. de 2020

por Alfred D

13 de ago. de 2020

por Shi Y

19 de ene. de 2019

por Chan-Se-Yeun

21 de feb. de 2018

por Rishi C

4 de jun. de 2018

por Musalula S

25 de ago. de 2018

por Joseph W

9 de ene. de 2020

por Satish P

12 de oct. de 2020

por Orlando D

30 de ene. de 2018

por Henry H

13 de feb. de 2017

por Ruiliang L

23 de mar. de 2021

por Jerry R

29 de ene. de 2018