Chevron Left
Volver a Sample-based Learning Methods

Opiniones y comentarios de aprendices correspondientes a Sample-based Learning Methods por parte de Universidad de Alberta

4.8
estrellas
1,110 calificaciones

Acerca del Curso

In this course, you will learn about several algorithms that can learn near optimal policies based on trial and error interaction with the environment---learning from the agent’s own experience. Learning from actual experience is striking because it requires no prior knowledge of the environment’s dynamics, yet can still attain optimal behavior. We will cover intuitively simple but powerful Monte Carlo methods, and temporal difference learning methods including Q-learning. We will wrap up this course investigating how we can get the best of both worlds: algorithms that can combine model-based planning (similar to dynamic programming) and temporal difference updates to radically accelerate learning. By the end of this course you will be able to: - Understand Temporal-Difference learning and Monte Carlo as two strategies for estimating value functions from sampled experience - Understand the importance of exploration, when using sampled experience rather than dynamic programming sweeps within a model - Understand the connections between Monte Carlo and Dynamic Programming and TD. - Implement and apply the TD algorithm, for estimating value functions - Implement and apply Expected Sarsa and Q-learning (two TD methods for control) - Understand the difference between on-policy and off-policy control - Understand planning with simulated experience (as opposed to classic planning strategies) - Implement a model-based approach to RL, called Dyna, which uses simulated experience - Conduct an empirical study to see the improvements in sample efficiency when using Dyna...

Principales reseñas

DP

14 de feb. de 2021

Excellent course that naturally extends the first specialization course. The application examples in programming are very good and I loved how RL gets closer and closer to how a living being thinks.

AA

11 de ago. de 2020

Great course, giving it 5 stars though it deserves both because the assignments have some serious issues that shouldn't actually be a matter. All the other parts are amazing though. Good job

Filtrar por:

1 - 25 de 219 revisiones para Sample-based Learning Methods

por JD

22 de sep. de 2019

por Kaiwen Y

2 de oct. de 2019

por hope

25 de ene. de 2020

por Juan C E

7 de mar. de 2020

por Rishi R

3 de ago. de 2020

por Mukund C

17 de mar. de 2020

por Kinal M

10 de ene. de 2020

por Kyle A

3 de oct. de 2019

por Ivan S F

29 de sep. de 2019

por Manuel B

28 de nov. de 2019

por Amit J

27 de feb. de 2021

por Manuel V d S

4 de oct. de 2019

por Maxim V

12 de ene. de 2020

por Andrew G

24 de dic. de 2019

por Bernard C

22 de mar. de 2020

por Maximiliano B

23 de feb. de 2020

por Jonathan B

9 de may. de 2020

por Steven W

11 de may. de 2021

por Sandesh J

8 de jun. de 2020

por César S

9 de jul. de 2021

por Yover M C C

22 de abr. de 2020

por Alberto H

28 de oct. de 2019

por Karol P

9 de abr. de 2021

por Pars V

5 de ene. de 2020

por Surya K

12 de abr. de 2020