Chevron Left
Volver a Big Data Analysis with Scala and Spark

Opiniones y comentarios de aprendices correspondientes a Big Data Analysis with Scala and Spark por parte de École Polytechnique Fédérale de Lausanne

2,551 calificaciones

Acerca del Curso

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming:

Principales reseñas


7 de jun. de 2017

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!


28 de nov. de 2019

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

Filtrar por:

1 - 25 de 506 revisiones para Big Data Analysis with Scala and Spark

por Rodion G

15 de abr. de 2019

por Luiz C

27 de ene. de 2019

por Choy R

10 de abr. de 2017

por Sait S K

1 de nov. de 2020

por Miguel A

19 de nov. de 2021

por Kuntal G

1 de abr. de 2017

por Evgeny K

24 de jul. de 2020

por Stephen E R

27 de mar. de 2017

por Florian W

1 de abr. de 2017

por Adel F

7 de ene. de 2018

por ciri

8 de jun. de 2017

por Krzysztof O

9 de ene. de 2021

por Pavel T

5 de abr. de 2017

por George Z

2 de may. de 2021

por Jack V

20 de jul. de 2021

por Shae S

23 de mar. de 2017

por Massimiliano D

14 de nov. de 2018

por Yaroslav G

8 de abr. de 2020

por Kostiantyn C

21 de may. de 2022

por Kushagra V

13 de jun. de 2017

por Joël V

17 de may. de 2019

por Anna B

20 de mar. de 2017

por Hristo I

9 de abr. de 2017

por Hessam S M

25 de mar. de 2018

por Varun R

22 de sep. de 2017