Chevron Left
Volver a State Estimation and Localization for Self-Driving Cars

Opiniones y comentarios de aprendices correspondientes a State Estimation and Localization for Self-Driving Cars por parte de Universidad de Toronto

4.7
estrellas
746 calificaciones

Acerca del Curso

Welcome to State Estimation and Localization for Self-Driving Cars, the second course in University of Toronto’s Self-Driving Cars Specialization. We recommend you take the first course in the Specialization prior to taking this course. This course will introduce you to the different sensors and how we can use them for state estimation and localization in a self-driving car. By the end of this course, you will be able to: - Understand the key methods for parameter and state estimation used for autonomous driving, such as the method of least-squares - Develop a model for typical vehicle localization sensors, including GPS and IMUs - Apply extended and unscented Kalman Filters to a vehicle state estimation problem - Understand LIDAR scan matching and the Iterative Closest Point algorithm - Apply these tools to fuse multiple sensor streams into a single state estimate for a self-driving car For the final project in this course, you will implement the Error-State Extended Kalman Filter (ES-EKF) to localize a vehicle using data from the CARLA simulator. This is an advanced course, intended for learners with a background in mechanical engineering, computer and electrical engineering, or robotics. To succeed in this course, you should have programming experience in Python 3.0, familiarity with Linear Algebra (matrices, vectors, matrix multiplication, rank, Eigenvalues and vectors and inverses), Statistics (Gaussian probability distributions), Calculus and Physics (forces, moments, inertia, Newton's Laws)....

Principales reseñas

GN

29 de oct. de 2019

best online course so far that explains kalman filter and estimation methods with examples not just focusing on theoretical ,Thanks to the Dr's and course staff who worked hard to produce this course.

JC

9 de feb. de 2021

The course is informative and well constructed for learners. The final project is designed well so that we can build sensor fusion tools while applying what we have learned from this course.

Filtrar por:

1 - 25 de 121 revisiones para State Estimation and Localization for Self-Driving Cars

por Jon H

4 de jun. de 2019

por MachWave

1 de jul. de 2019

por Rade

7 de jun. de 2019

por Wit S

14 de oct. de 2019

por Asad Q

9 de feb. de 2020

por Guruprasad M H

29 de abr. de 2019

por Remon G

12 de ago. de 2019

por River L

27 de abr. de 2019

por Joachim S

11 de jun. de 2019

por Hemanth K K

23 de may. de 2021

por Carlos A

19 de mar. de 2021

por Muhammad H S H J I

12 de ago. de 2019

por carlos s

5 de dic. de 2019

por anis

6 de dic. de 2019

por Georgios T

30 de jul. de 2019

por Yuwei W

17 de nov. de 2019

por D.B

5 de abr. de 2020

por Kasra D

12 de oct. de 2020

por Andrea B

16 de jun. de 2020

por Dane R

6 de jul. de 2020

por Mukund C

8 de jun. de 2020

por Qi W

11 de ene. de 2021

por Parikshit M

31 de mar. de 2020

por Yashasvi S

29 de jun. de 2020

por Ananth R

30 de jul. de 2019