Chevron Left
Volver a Survival Analysis in R for Public Health

Opiniones y comentarios de aprendices correspondientes a Survival Analysis in R for Public Health por parte de Imperial College London

280 calificaciones

Acerca del Curso

Welcome to Survival Analysis in R for Public Health! The three earlier courses in this series covered statistical thinking, correlation, linear regression and logistic regression. This one will show you how to run survival – or “time to event” – analysis, explaining what’s meant by familiar-sounding but deceptive terms like hazard and censoring, which have specific meanings in this context. Using the popular and completely free software R, you’ll learn how to take a data set from scratch, import it into R, run essential descriptive analyses to get to know the data’s features and quirks, and progress from Kaplan-Meier plots through to multiple Cox regression. You’ll use data simulated from real, messy patient-level data for patients admitted to hospital with heart failure and learn how to explore which factors predict their subsequent mortality. You’ll learn how to test model assumptions and fit to the data and some simple tricks to get round common problems that real public health data have. There will be mini-quizzes on the videos and the R exercises with feedback along the way to check your understanding. Prerequisites Some formulae are given to aid understanding, but this is not one of those courses where you need a mathematics degree to follow it. You will need basic numeracy (for example, we will not use calculus) and familiarity with graphical and tabular ways of presenting results. The three previous courses in the series explained concepts such as hypothesis testing, p values, confidence intervals, correlation and regression and showed how to install R and run basic commands. In this course, we will recap all these core ideas in brief, but if you are unfamiliar with them, then you may prefer to take the first course in particular, Statistical Thinking in Public Health, and perhaps also the second, on linear regression, before embarking on this one....

Principales reseñas


2 de jul. de 2020

Great course superb support and very clear professor. This course is a good motivator to continue to explore public health and statistics.


26 de ago. de 2019

Good and practical introduction to survival analysis. I liked the emphasis on how to deal with practical data sets and data problems.

Filtrar por:

26 - 50 de 62 revisiones para Survival Analysis in R for Public Health

por Faisal A

22 de jul. de 2019


24 de ago. de 2020

por Anusha B

15 de jun. de 2020

por Mohammad R W

26 de dic. de 2019

por Junwen Z

15 de mar. de 2020

por Klorence W

14 de dic. de 2020

por Sidney d S P B

5 de jul. de 2020

por amoulay

30 de jun. de 2021

por Ronpichai C

24 de may. de 2020

por Jin C

31 de jul. de 2020

por Jeffrey Y

23 de mar. de 2022

por Jesús A O D

4 de may. de 2020

por Linh V M

6 de jul. de 2020

por Shoummo S G

11 de jul. de 2020

por Yasna P S

4 de mar. de 2020

por Pedro M

16 de abr. de 2020

por fabien M

23 de abr. de 2020

por Shakil A S

17 de feb. de 2021

por Oleksandr T

30 de ago. de 2020

por Leo H

4 de jun. de 2020

por Yan X

22 de nov. de 2019

por Vajini A

30 de ene. de 2021

por Pau G

17 de mar. de 2020

por Deleted A

23 de oct. de 2021

por Basilio G

13 de may. de 2019