이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.
이 과정에서는 먼저 데이터에 관해 논의하면서 데이터 품질을 개선하고 탐색적 데이터 분석을 수행하는 방법을 알아봅니다. Vertex AI AutoML과 코드를 한 줄도 작성하지 않고 ML 모델을 빌드하고, 학습시키고, 배포하는 방법을 설명합니다. 학습자는 Big Query ML의 이점을 이해할 수 있습니다. 그런 다음, 머신러닝(ML) 모델 최적화 방법과 일반화 및 샘플링으로 커스텀 학습용 ML 모델 품질을 평가하는 방법을 다룹니다.
De la lección
일반화 및 샘플링
이번에는 다소 이상한 질문을 살펴보겠습니다. 정확도가 가장 높은 머신러닝 모델이 적합하지 않은 때는 언제일까요? 직전의 최적화 모듈에서 암시했듯 학습 데이터 세트에 대한 모델의 손실 함수가 0이라고 해서 실제로도 함수가 새로운 데이터에서 제대로 작동하는 것은 아닙니다. 학습자는 반복 가능한 학습, 평가, 테스트 데이터 세트를 생성하고 성능 벤치마크를 설정하는 방법을 배웁니다.