Los datos son un componente crucial de un modelo de aprendizaje automático. Recopilar los datos correctos no es suficiente. También es necesario asegurarse de implementar los procesos adecuados para limpiar, analizar y transformar los datos según sea necesario, de modo que el modelo pueda captar tantos indicadores como sea posible a partir de esos datos. En este módulo, analizamos el entrenamiento con grandes conjuntos de datos mediante tf.data, el trabajo con archivos en la memoria y cómo preparar los datos para el entrenamiento. Después, analizamos las incorporaciones y terminamos con una descripción general del ajuste de datos con capas de procesamiento previo de tf.keras.