Chevron Left
Volver a Analyze Box Office Data with Seaborn and Python

Opiniones y comentarios de aprendices correspondientes a Analyze Box Office Data with Seaborn and Python por parte de Coursera Project Network

4.5
estrellas
172 calificaciones

Acerca del Curso

Welcome to this project-based course on Analyzing Box Office Data with Seaborn and Python. In this course, you will be working with the The Movie Database (TMDB) Box Office Prediction data set. The motion picture industry is raking in more revenue than ever with its expansive growth the world over. Can we build models to accurately predict movie revenue? Could the results from these models be used to further increase revenue? We try to answer these questions by way of exploratory data analysis (EDA) in this project and the next. The statistical data visualization libraries Seaborn and Plotly will be our workhorses to generate interactive, publication-quality graphs. By the end of this course, you will be able to produce data visualizations in Python with Seaborn, and apply graphical techniques used in exploratory data analysis (EDA). This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

AD

5 de jun. de 2020

Everything taught was understood. Well explained. Looking for more projects from the instructor! Thank you! It was a great experience and I learnt a lot !

MA

22 de dic. de 2020

Mr. Kekre was elaborative, clear, neat, and direct in illustrating the project, this is not overpraising; I would like to attend more projects for him.

Filtrar por:

1 - 25 de 27 revisiones para Analyze Box Office Data with Seaborn and Python

por Mario C M

9 de jun. de 2020

por Ritesh S

26 de may. de 2020

por Kalaiarasi N

3 de jun. de 2020

por Aparajita D

6 de jun. de 2020

por M B A

23 de dic. de 2020

por Raghav G

30 de jul. de 2020

por Nihar S

11 de may. de 2020

por Deleted A

13 de may. de 2020

por daniel s

30 de may. de 2020

por Veeramanickam M

23 de abr. de 2020

por Joey L

21 de may. de 2020

por HAY a

20 de ago. de 2020

por Archit M

22 de jun. de 2020

por Ma. A S

3 de oct. de 2020

por Gregory G J

9 de ene. de 2021

por cristhian e c t

4 de ene. de 2021

por tale p

17 de jun. de 2020

por Anantharaman K

12 de jul. de 2020

por Ananna B

21 de may. de 2020

por Rohan L

4 de may. de 2020

por Bahar R

28 de may. de 2020

por Manzil-e A K

26 de jul. de 2020

por Muhammad A B

12 de ago. de 2020

por Jorge G

25 de feb. de 2021

por Amal N L

23 de jul. de 2020