Machine Learning Pipelines with Azure ML Studio

4.6
estrellas

681 calificaciones

ofrecido por

38.835 ya inscrito

En este Proyecto guiado gratuito, tú:

Pre-process data using appropriate modules

Train and evaluate a boosted decision tree model on Azure ML Studio

Create scoring and predictive experiments

Deploy the trained model as an Azure web service

Demuestra esta experiencia práctica en una entrevista

2 hours
Ideal para principiantes
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

In this project-based course, you are going to build an end-to-end machine learning pipeline in Azure ML Studio, all without writing a single line of code! This course uses the Adult Income Census data set to train a model to predict an individual's income. It predicts whether an individual's annual income is greater than or less than $50,000. The estimator used in this project is a Two-Class Boosted Decision Tree classifier. Some of the features used to train the model are age, education, occupation, etc. Once you have scored and evaluated the model on the test data, you will deploy the trained model as an Azure Machine Learning web service. In just under an hour, you will be able to send new data to the web service API and receive the resulting predictions. This is the second course in this series on building machine learning applications using Azure Machine Learning Studio. I highly encourage you to take the first course before proceeding. It has instructions on how to set up your Azure ML account with $200 worth of free credit to get started with running your experiments! This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requerimientos

A basic understanding of machine learning workflows.

Habilidades que desarrollarás

  • Data Science

  • Machine Learning

  • Data Analysis

  • Binary Classification

  • Azure Machine Learning

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction and Project Overview

  2. Data Cleaning

  3. Accounting for Class Imbalance

  4. Training a Two-Class Boosted Decision Tree Model and Hyperparameter Tuning

  5. Scoring and Evaluating the Models

  6. Publishing the Trained Model as a Web Service for Inference

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre MACHINE LEARNING PIPELINES WITH AZURE ML STUDIO

Ver todas las reseñas

Preguntas Frecuentes

Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.

Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.

Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.

En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.

Sí, todo lo que necesitas para completar tu proyecto guiado estará disponible en un escritorio en la nube que estará disponible en tu navegador.

Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.