Chevron Left
Volver a Logistic Regression with Python and Numpy

Opiniones y comentarios de aprendices correspondientes a Logistic Regression with Python and Numpy por parte de Coursera Project Network

4.5
estrellas
145 calificaciones

Acerca del Curso

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed....

Principales reseñas

DP

8 de abr. de 2020

Want to do a project in Logistic Regression. You are at the right spot Don't delay and take the course.

MT

9 de mar. de 2020

Easy to follow along, each step was made very clear, and I understood the justification behind steps.

Filtrar por:

1 - 24 de 24 revisiones para Logistic Regression with Python and Numpy

por shiva s t

9 de mar. de 2020

por Haofei M

4 de mar. de 2020

por Duddela S P

9 de abr. de 2020

por Megan T

10 de mar. de 2020

por Raj K

29 de abr. de 2020

por Pranjal M

14 de jun. de 2020

por Thomas H

12 de nov. de 2021

por Ashwin K

2 de sep. de 2020

por Gangone R

2 de jul. de 2020

por JONNALA S R

7 de may. de 2020

por Nandivada P E

15 de jun. de 2020

por Doss D

23 de jun. de 2020

por Saikat K

7 de sep. de 2020

por Lahcene O M

3 de mar. de 2020

por tale p

27 de jun. de 2020

por p s

24 de jun. de 2020

por ANURAG P

5 de jun. de 2020

por Munna K

27 de sep. de 2020

por Chow K M

4 de oct. de 2021

por Manzil-e A K

20 de jul. de 2020

por Rosario P

23 de sep. de 2020

por Abdul Q

30 de abr. de 2020

por Weerachai Y

8 de jul. de 2020

por Александр П

9 de mar. de 2020