Essential Causal Inference Techniques for Data Science

4.6
estrellas

29 calificaciones

ofrecido por
En este proyecto guiado, tú:
2 hours
Principiante
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

Data scientists often get asked questions related to causality: (1) did recent PR coverage drive sign-ups, (2) does customer support increase sales, or (3) did improving the recommendation model drive revenue? Supporting company stakeholders requires every data scientist to learn techniques that can answer questions like these, which are centered around issues of causality and are solved with causal inference. In this project, you will learn the high level theory and intuition behind the four main causal inference techniques of controlled regression, regression discontinuity, difference in difference, and instrumental variables as well as some techniques at the intersection of machine learning and causal inference that are useful in data science called double selection and causal forests. These will help you rigorously answer questions like those above and become a better data scientist!

Habilidades que desarrollarás

  • Regression Discontinuity Design

  • Causal Inference

  • Instrumental Variable

  • regression

  • Difference In Differences

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre ESSENTIAL CAUSAL INFERENCE TECHNIQUES FOR DATA SCIENCE

Ver todas las reseñas

Preguntas Frecuentes