Chevron Left
Volver a Classification with Transfer Learning in Keras

Opiniones y comentarios de aprendices correspondientes a Classification with Transfer Learning in Keras por parte de Coursera Project Network

4.5
estrellas
153 calificaciones

Acerca del Curso

In this 1.5 hour long project-based course, you will learn to create and train a Convolutional Neural Network (CNN) with an existing CNN model architecture, and its pre-trained weights. We will use the MobileNet model architecture along with its weights trained on the popular ImageNet dataset. By using a model with pre-trained weights, and then training just the last layers on a new dataset, we can drastically reduce the training time required to fit the model to the new data . The pre-trained model has already learned to recognize thousands on simple and complex image features, and we are using its output as the input to the last layers that we are training. In order to be successful in this project, you should be familiar with Python, Neural Networks, and CNNs. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

AS

20 de jun. de 2020

How else would I have learned this? What a great fast way to apply a concept in real code.

SK

28 de may. de 2020

Everything was as per description! Need more advanced tasks. Thanks, Amit Sir!

Filtrar por:

1 - 19 de 19 revisiones para Classification with Transfer Learning in Keras

por Mudit D

1 de jul. de 2020

por Harshad L

7 de jun. de 2020

por Alex S

20 de jun. de 2020

por Sarah K

29 de may. de 2020

por M V

3 de jun. de 2020

por EDWIN J

15 de jun. de 2020

por Kamlesh C

20 de jun. de 2020

por Gaikwad N

23 de jul. de 2020

por p s

25 de jun. de 2020

por tale p

23 de jun. de 2020

por Patil B

2 de may. de 2020

por Ali E

22 de mar. de 2020

por Yubesny V

13 de nov. de 2020

por Utkarsh R

24 de mar. de 2020

por Thanda H

11 de sep. de 2020

por Mr. M K S E

8 de may. de 2020

por Raj v

14 de jul. de 2020

por Rathi.R

11 de jun. de 2020

por Jorge G

25 de feb. de 2021