Chevron Left
Volver a Image Noise Reduction with Auto-encoders using TensorFlow

Opiniones y comentarios de aprendices correspondientes a Image Noise Reduction with Auto-encoders using TensorFlow por parte de Coursera Project Network

4.7
estrellas
109 calificaciones

Acerca del Curso

In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

NL

7 de abr. de 2020

Really great learning for beginners. Through project learning it gives very good confidence. But rhyme desktop should be available until completion of project.

NS

15 de ago. de 2020

nice presentation skill, it is helpful for me to noise reduction and image processing

Filtrar por:

1 - 15 de 15 revisiones para Image Noise Reduction with Auto-encoders using TensorFlow

por Narendra L L

8 de abr. de 2020

por Ravi P B

17 de abr. de 2020

por noman s

16 de ago. de 2020

por Kolawole E O

11 de oct. de 2020

por SUGUNA M

19 de nov. de 2020

por nilesh n

28 de mar. de 2020

por XAVIER S M

2 de jun. de 2020

por SUMIT Y

9 de jul. de 2020

por Kamlesh C

7 de ago. de 2020

por sarithanakkala

23 de jun. de 2020

por p s

23 de jun. de 2020

por tale p

17 de jun. de 2020

por Rohit M

13 de jun. de 2020

por NAIDU P S A

27 de jun. de 2020

por Jorge G

25 de feb. de 2021