Interpretable Machine Learning Applications: Part 1

4.3
estrellas

18 calificaciones

ofrecido por
En este proyecto guiado, tú:

How to select and compare different prediction models (classification regressors) for a real world dataset (FIFA 2018 Soccer World Cup Statistics).

How to extract the most important features, which impact the classifiers, in a model-agnostic approach, together with caveats.

How to get an insight into the way values of the most important features impact the predictions made by the classifiers.

2-hour course, including time of video recordings, practicing and readings, taking the quiz.
Principiante
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

In this 1-hour long project-based course, you will learn how to create interpretable machine learning applications on the example of two classification regression models, decision tree and random forestc classifiers. You will also learn how to explain such prediction models by extracting the most important features and their values, which mostly impact these prediction models. In this sense, the project will boost your career as Machine Learning (ML) developer and modeler in that you will be able to get a deeper insight into the behaviour of your ML model. The project will also benefit your career as a decision maker in an executive position, or consultant, interested in deploying trusted and accountable ML applications.

Habilidades que desarrollarás

  • Python basic knowledge

  • Features engineering

  • Machine learning classification (regression) models

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Setting the stage (Python Jupyter Lab web-based Server environment, importing the dataset and file to train and test the designated classification regressors as prediction models).

  2. Train, test and estimate the accuracy (confusion matrix) of a Decision Tree classifier.

  3. Train, test and estimate the accuracy (confusion matrix) of a Random Tree classifier as an alternative to the previous one.

  4. Extract a ranking list of the features, which are most important for each one of our prediction models.

  5. Extract and plot the impact of the values of selected important features on predictions being made by each one of our prediction models.

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre INTERPRETABLE MACHINE LEARNING APPLICATIONS: PART 1

Ver todas las reseñas

Preguntas Frecuentes

Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.

Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.

Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.

Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.

Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.

La ayuda financiera no está disponible para proyectos guiados.

El acceso como oyente no está disponible para los proyectos guiados.

En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.

Sí, todo lo que necesitas para completar tu proyecto guiado estará disponible en un escritorio en la nube que estará disponible en tu navegador.

Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.