Chevron Left
Volver a Logistic Regression with NumPy and Python

Opiniones y comentarios de aprendices correspondientes a Logistic Regression with NumPy and Python por parte de Coursera Project Network

4.5
estrellas
387 calificaciones

Acerca del Curso

Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed....

Principales reseñas

AS

29 de ago. de 2020

Very helpful for learning logistic regression without using any libraries. Before taking this project one should have a clear understanding of Logistic Regression, then it will be very helpful

CB

23 de may. de 2020

Its a good course. Instructor is good. Lot of concepts cleared and enough practice has done.

Filtrar por:

1 - 25 de 50 revisiones para Logistic Regression with NumPy and Python

por Sambhaw S

2 de ago. de 2020

por Arnab S

30 de ago. de 2020

por CHINMAY B

24 de may. de 2020

por MV

8 de nov. de 2021

por Juan M B

7 de jun. de 2020

por Ramya G R

9 de jun. de 2020

por Punam P

4 de abr. de 2020

por Thulasi R I 2 B 0

26 de sep. de 2020

por Mari M

14 de may. de 2020

por Pulkit S

18 de jun. de 2020

por Shruti S

21 de jul. de 2020

por Krishna M T

12 de ago. de 2020

por Melissa d C S

21 de jun. de 2020

por Pulkit D

16 de oct. de 2020

por Erick M A

20 de jul. de 2020

por Pritam B

14 de may. de 2020

por Shreyas R

25 de abr. de 2020

por Diego R G

21 de may. de 2020

por jagadeeswari N

28 de may. de 2020

por Anisetti S K

23 de abr. de 2020

por Ayesha N

16 de jun. de 2020

por Dinh-Duy L

13 de jul. de 2020

por Nandivada P E

15 de jun. de 2020

por Dipak S s

24 de abr. de 2020

por Saikat K

8 de sep. de 2020