TensorFlow Serving with Docker for Model Deployment

4.8
estrellas

49 calificaciones

ofrecido por

4512 ya inscrito

En este proyecto guiado, tú:
1.5 hours
Intermedio
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

This is a hands-on, guided project on deploying deep learning models using TensorFlow Serving with Docker. In this 1.5 hour long project, you will train and export TensorFlow models for text classification, learn how to deploy models with TF Serving and Docker in 90 seconds, and build simple gRPC and REST-based clients in Python for model inference. With the worldwide adoption of machine learning and AI by organizations, it is becoming increasingly important for data scientists and machine learning engineers to know how to deploy models to production. While DevOps groups are fantastic at scaling applications, they are not the experts in ML ecosystems such as TensorFlow and PyTorch. This guided project gives learners a solid, real-world foundation of pushing your TensorFlow models from development to production in no time! Prerequisites: In order to successfully complete this project, you should be familiar with Python, and have prior experience with building models with Keras or TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Deep Learning

  • Docker

  • TensorFlow Serving

  • Tensorflow

  • model deployment

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre TENSORFLOW SERVING WITH DOCKER FOR MODEL DEPLOYMENT

Ver todas las reseñas

Preguntas Frecuentes