- Decision Trees
- Artificial Neural Network
- Logistic Regression
- Recommender Systems
- Linear Regression
- Regularization to Avoid Overfitting
- Gradient Descent
- Supervised Learning
- Logistic Regression for Classification
- Xgboost
- Tensorflow
- Tree Ensembles
Programa especializado: Aprendizaje Automático
#BreakIntoAI with Machine Learning Specialization. Master fundamental AI concepts and develop practical machine learning skills in the beginner-friendly, 3-course program by AI visionary Andrew Ng
Ofrecido Por


Qué aprenderás
Build ML models with NumPy & scikit-learn, build & train supervised models for prediction & binary classification tasks (linear, logistic regression)
Build & train a neural network with TensorFlow to perform multi-class classification, & build & use decision trees & tree ensemble methods
Apply best practices for ML development & use unsupervised learning techniques for unsupervised learning including clustering & anomaly detection
Build recommender systems with a collaborative filtering approach & a content-based deep learning method & build a deep reinforcement learning model
Habilidades que obtendrás
Acerca de este Programa Especializado
Proyecto de aprendizaje aplicado
By the end of this Specialization, you will be ready to:
• Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn.
• Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression.
• Build and train a neural network with TensorFlow to perform multi-class classification.
• Apply best practices for machine learning development so that your models generalize to data and tasks in the real world.
• Build and use decision trees and tree ensemble methods, including random forests and boosted trees.
• Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection.
• Build recommender systems with a collaborative filtering approach and a content-based deep learning method.
• Build a deep reinforcement learning model.
Cómo funciona el programa especializado
Toma cursos
Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.
Proyecto práctico
Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.
Obtén un certificado
Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

Ofrecido por
Preguntas Frecuentes
¿Cuál es la política de reembolsos?
¿Puedo inscribirme en un solo curso?
¿Hay ayuda económica disponible?
¿Puedo tomar este curso de manera gratuita?
¿Este curso es 100 % en línea? ¿Necesito asistir a alguna clase en persona?
What is machine learning?
What is the Machine Learning Specialization about?
What will I learn in the Machine Learning Specialization?
What background knowledge is necessary for the Machine Learning Specialization?
Who is the Machine Learning Specialization for?
How long does it take to complete the Machine Learning Specialization?
Who created the Machine Learning Specialization?
What makes the Machine Learning Specialization so unique?
How is the new Machine Learning Specialization different from the original course?
I'm a complete beginner. Can I take this Specialization?
I enrolled in but couldn’t complete the original Machine Learning course. Can I take the new Machine Learning Specialization?
I’ve completed the original Machine Learning course. Should I take the new Machine Learning Specialization?
I’ve completed the Deep Learning Specialization. Should I take the new Machine Learning Specialization?
Is this a standalone course or a Specialization?
Do I need to take the courses in a specific order?
How much does the Specialization cost?
Can I apply for financial aid?
Can I audit the Machine Learning Specialization?
How do I get a receipt to get this reimbursed by my employer?
I want to purchase this Specialization for my employees. How can I do that?
¿Recibiré crédito universitario por completar el programa especializado?
Will I receive a certificate at the end of the Specialization?
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.