Chevron Left
Volver a Linear Regression with NumPy and Python

Opiniones y comentarios de aprendices correspondientes a Linear Regression with NumPy and Python por parte de Coursera Project Network

4.5
estrellas
939 calificaciones

Acerca del Curso

Welcome to this project-based course on Linear Regression with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent and linear regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed....

Principales reseñas

AD

24 de may. de 2020

It is a great project and an excellent experience to learn practical exposure to Linear regression with nmpy and python. I am waiting to get another project.

VB

9 de jul. de 2020

Best Project ever we have seen, all plotting and code are explain in very well manner and its definitely increase my knowledge in machine learning

Filtrar por:

51 - 75 de 130 revisiones para Linear Regression with NumPy and Python

por Ernitia P

20 de jun. de 2020

por Geetha l

5 de ago. de 2020

por Tessy C

28 de nov. de 2022

por Chamod

11 de nov. de 2020

por Mr.Stephen N J

8 de jun. de 2020

por ABHISHEK Y

25 de jun. de 2020

por Sanket G

10 de jul. de 2020

por Muhammad H

22 de ago. de 2020

por Mayank A

21 de jul. de 2020

por Deleted A

1 de jun. de 2020

por RAVI M

6 de mar. de 2022

por Anisetti S K

23 de abr. de 2020

por Shrey K

1 de oct. de 2020

por Benjamin R

9 de jun. de 2022

por Mayank K S

7 de abr. de 2022

por Amil

24 de ago. de 2020

por Nandivada P E

28 de may. de 2020

por KORADA H V

16 de sep. de 2021

por VYANKATESH M

11 de jun. de 2020

por Vimal S R

17 de may. de 2022

por Nithin K

12 de ago. de 2020

por Doss D

14 de jun. de 2020

por purnachand k

12 de may. de 2020

por F 1 B

3 de sep. de 2022

por Mohamed A

16 de ago. de 2022