Chevron Left
Volver a Predicting Credit Card Fraud with R

Opiniones y comentarios de aprendices correspondientes a Predicting Credit Card Fraud with R por parte de Universidad del norte de Texas

4.5
estrellas
25 calificaciones

Acerca del Curso

Welcome to Predicting Credit Card Fraud with R. In this project-based course, you will learn how to use R to identify fraudulent credit card transactions with a variety of classification methods and use R to generate synthetic samples to address the common problem of classification bias for highly imbalanced datasets—the class of interest (fraud) represents less than 1% of the observations. Class imbalance can make it difficult to detect the effect independent variables have on fraud, ultimately leading to higher misclassification rates. Fixing the imbalance allows the minority class (fraud) to be better learned by the classifier algorithms. After completing the project, you will be able to apply the methods introduced in the project to a wide range of classification problems that typically confront class imbalance, including predicting loan default, customer churn, cancer diagnosis, early high school dropout risk, and malware detection. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

JB

2 de abr. de 2021

Very intriguing course and example application. Very informative and practical approaches to addressing imbalances in data. Excellent instructor and great course.

RV

3 de feb. de 2021

It is best guided project which helps to learn caret library and this helped me to increase my r programming skills

Filtrar por:

1 - 8 de 8 revisiones para Predicting Credit Card Fraud with R

por Vicente C K

3 de may. de 2021

por James B

2 de abr. de 2021

por RASHIKA D

12 de nov. de 2020

por Ramachandra A V

4 de feb. de 2021

por Jason M

7 de abr. de 2021

por Charles S

9 de dic. de 2021

por Gary M

8 de abr. de 2021

por kuo j

26 de mar. de 2022