Optimize TensorFlow Models For Deployment with TensorRT

4.6
estrellas

56 calificaciones

ofrecido por

3710 ya inscrito

En este Proyecto guiado gratuito, tú:
1.5 hours
Intermedio
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

This is a hands-on, guided project on optimizing your TensorFlow models for inference with NVIDIA's TensorRT. By the end of this 1.5 hour long project, you will be able to optimize Tensorflow models using the TensorFlow integration of NVIDIA's TensorRT (TF-TRT), use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision, and observe how tuning TF-TRT parameters affects performance and inference throughput. Prerequisites: In order to successfully complete this project, you should be competent in Python programming, understand deep learning and what inference is, and have experience building deep learning models in TensorFlow and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requerimientos

Habilidades que desarrollarás

  • Deep Learning

  • NVIDIA TensorRT (TF-TRT)

  • Python Programming

  • Tensorflow

  • keras

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre OPTIMIZE TENSORFLOW MODELS FOR DEPLOYMENT WITH TENSORRT

Ver todas las reseñas

Preguntas Frecuentes