Chevron Left
Volver a Optimize TensorFlow Models For Deployment with TensorRT

Opiniones y comentarios de aprendices correspondientes a Optimize TensorFlow Models For Deployment with TensorRT por parte de Coursera Project Network

4.6
estrellas
56 calificaciones

Acerca del Curso

This is a hands-on, guided project on optimizing your TensorFlow models for inference with NVIDIA's TensorRT. By the end of this 1.5 hour long project, you will be able to optimize Tensorflow models using the TensorFlow integration of NVIDIA's TensorRT (TF-TRT), use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision, and observe how tuning TF-TRT parameters affects performance and inference throughput. Prerequisites: In order to successfully complete this project, you should be competent in Python programming, understand deep learning and what inference is, and have experience building deep learning models in TensorFlow and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

LS

3 de jun. de 2021

Great workshop, all the concepts were very well explained.

AA

14 de mar. de 2022

The first to introduce such a rare and important topic.

Filtrar por:

1 - 10 de 10 revisiones para Optimize TensorFlow Models For Deployment with TensorRT

por Awais A

28 de mar. de 2021

por Jorge G

25 de feb. de 2021

por Luis S

4 de jun. de 2021

por Abdelrahman A

15 de mar. de 2022

por Fabian I M N

20 de abr. de 2021

por Nusrat I

16 de abr. de 2021

por Chandra S

13 de dic. de 2020

por ERNAZAROV B T O

10 de sep. de 2020

por Vignesh R

8 de jul. de 2021

por Yilber R

1 de oct. de 2020